#include <ESP8266WiFi.h>
#include <DHT.h>
#include <PubSubClient.h>
#include <ESP8266mDNS.h>
#include <WiFiUdp.h>
#include <ArduinoOTA.h>
#include <ArduinoJson.h>
/************ WIFI and MQTT INFORMATION (CHANGE THESE FOR YOUR SETUP) ******************/
#define wifi_ssid “YourSSID” //type your WIFI information inside the quotes
#define wifi_password “YourWIFIpassword”
#define mqtt_server “your.mqtt.server.ip”
#define mqtt_user “yourMQTTusername”
#define mqtt_password “yourMQTTpassword”
#define mqtt_port 1883
/************* MQTT TOPICS (change these topics as you wish) **************************/
#define sensornode1_state_topic “bruh/sensornode1”
#define sensornode1_set_topic “bruh/sensornode1/set”
const char* on_cmd = “ON”;
const char* off_cmd = “OFF”;
/**************************** FOR OTA **************************************************/
#define SENSORNAME “sensornode1”
#define OTApassword “YouPassword” // change this to whatever password you want to use when you upload OTA
int OTAport = 8266;
/**************************** PIN DEFINITIONS ********************************************/
/const int redPin = D1;/
/const int greenPin = D2;/
/const int bluePin = D3;/
/#define PIRPIN D5/
#define DHTPIN D7
#define DHTTYPE DHT22
#define LDRPIN A0
/**************************** SENSOR DEFINITIONS *******************************************/
float ldrValue;
int LDR;
float calcLDR;
float diffLDR = 25;
float diffTEMP = 0.2;
float tempValue;
float diffHUM = 1;
float humValue;
/int pirValue;/
/int pirStatus;/
/String motionStatus;/
char message_buff[100];
int calibrationTime = 0;
const int BUFFER_SIZE = 300;
#define MQTT_MAX_PACKET_SIZE 512
/******************************** GLOBALS for fade/flash *******************************/
/*byte red = 255;
byte green = 255;
byte blue = 255;
byte brightness = 255;
byte realRed = 0;
byte realGreen = 0;
byte realBlue = 0;
bool stateOn = false;
bool startFade = false;
unsigned long lastLoop = 0;
int transitionTime = 0;
bool inFade = false;
int loopCount = 0;
int stepR, stepG, stepB;
int redVal, grnVal, bluVal;
bool flash = false;
bool startFlash = false;
int flashLength = 0;
unsigned long flashStartTime = 0;
byte flashRed = red;
byte flashGreen = green;
byte flashBlue = blue;
byte flashBrightness = brightness;*/
WiFiClient espClient;
PubSubClient client(espClient);
DHT dht(DHTPIN, DHTTYPE);
/********************************** START SETUP*****************************************/
void setup() {
Serial.begin(115200);
/pinMode(PIRPIN, INPUT);/
pinMode(DHTPIN, INPUT);
pinMode(LDRPIN, INPUT);
Serial.begin(115200);
delay(10);
ArduinoOTA.setPort(OTAport);
ArduinoOTA.setHostname(SENSORNAME);
ArduinoOTA.setPassword((const char *)OTApassword);
Serial.print(“calibrating sensor “);
for (int i = 0; i < calibrationTime; i++) {
Serial.print(”.”);
delay(1000);
}
Serial.println("Starting Node named " + String(SENSORNAME));
setup_wifi();
client.setServer(mqtt_server, mqtt_port);
client.setCallback(callback);
ArduinoOTA.onStart( {
Serial.println(“Starting”);
});
ArduinoOTA.onEnd( {
Serial.println("\nEnd");
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) {
Serial.printf(“Progress: %u%%\r”, (progress / (total / 100)));
});
ArduinoOTA.onError([](ota_error_t error) {
Serial.printf("Error[%u]: ", error);
if (error == OTA_AUTH_ERROR) Serial.println(“Auth Failed”);
else if (error == OTA_BEGIN_ERROR) Serial.println(“Begin Failed”);
else if (error == OTA_CONNECT_ERROR) Serial.println(“Connect Failed”);
else if (error == OTA_RECEIVE_ERROR) Serial.println(“Receive Failed”);
else if (error == OTA_END_ERROR) Serial.println(“End Failed”);
});
ArduinoOTA.begin();
Serial.println(“Ready”);
Serial.print("IPess: ");
Serial.println(WiFi.localIP());
reconnect();
}
/********************************** START SETUP WIFI*****************************************/
void setup_wifi() {
delay(10);
Serial.println();
Serial.print("Connecting to ");
Serial.println(wifi_ssid);
WiFi.mode(WIFI_STA);
WiFi.begin(wifi_ssid, wifi_password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println(“WiFi connected”);
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
/********************************** START CALLBACK*****************************************/
void callback(char* topic, byte* payload, unsigned int length) {
Serial.print(“Message arrived [”);
Serial.print(topic);
Serial.print("] ");
char message[length + 1];
for (int i = 0; i < length; i++) {
message[i] = (char)payload[i];
}
message[length] = ‘\0’;
Serial.println(message);
if (!processJson(message)) {
return;
}
/*if (stateOn) {
// Update lights
realRed = map(red, 0, 255, 0, brightness);
realGreen = map(green, 0, 255, 0, brightness);
realBlue = map(blue, 0, 255, 0, brightness);
}
else {
realRed = 0;
realGreen = 0;
realBlue = 0;
}
startFade = true;
inFade = false; // Kill the current fade*/
sendState();
}
/********************************** START PROCESS JSON*****************************************/
bool processJson(char* message) {
StaticJsonBuffer<BUFFER_SIZE> jsonBuffer;
JsonObject& root = jsonBuffer.parseObject(message);
if (!root.success()) {
Serial.println(“parseObject() failed”);
return false;
}
if (root.containsKey(“state”)) {
if (strcmp(root[“state”], on_cmd) == 0) {
stateOn = true;
}
else if (strcmp(root[“state”], off_cmd) == 0) {
stateOn = false;
}
}
/*// If “flash” is included, treat RGB and brightness differently
if (root.containsKey(“flash”)) {
flashLength = (int)root[“flash”] * 1000;
if (root.containsKey("brightness")) {
flashBrightness = root["brightness"];
}
else {
flashBrightness = brightness;
}
if (root.containsKey("color")) {
flashRed = root["color"]["r"];
flashGreen = root["color"]["g"];
flashBlue = root["color"]["b"];
}
else {
flashRed = red;
flashGreen = green;
flashBlue = blue;
}
flashRed = map(flashRed, 0, 255, 0, flashBrightness);
flashGreen = map(flashGreen, 0, 255, 0, flashBrightness);
flashBlue = map(flashBlue, 0, 255, 0, flashBrightness);
flash = true;
startFlash = true;
}
else { // Not flashing
flash = false;
if (root.containsKey("color")) {
red = root["color"]["r"];
green = root["color"]["g"];
blue = root["color"]["b"];
}
if (root.containsKey("brightness")) {
brightness = root["brightness"];
}
if (root.containsKey("transition")) {
transitionTime = root["transition"];
}
else {
transitionTime = 0;*/
}
}
return true;
}
/********************************** START SEND STATE*****************************************/
void sendState() {
StaticJsonBuffer<BUFFER_SIZE> jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
*root[“state”] = (stateOn) ? on_cmd : off_cmd;
JsonObject& color = root.createNestedObject(“color”);
color[“r”] = red;
color[“g”] = green;
color[“b”] = blue;*/
root[“brightness”] = brightness;
root[“humidity”] = (String)humValue;
*root[“motion”] = (String)motionStatus;*
root[“ldr”] = (String)LDR;
root[“temperature”] = (String)tempValue;
root[“heatIndex”] = (String)calculateHeatIndex(humValue, tempValue);
char buffer[root.measureLength() + 1];
root.printTo(buffer, sizeof(buffer));
Serial.println(buffer);
client.publish(sensornode1_state_topic, buffer, true);
}
/*
- Calculate Heat Index value AKA “Real Feel”
- NOAA heat index calculations taken from
-
http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
/
float calculateHeatIndex(float humidity, float temp) {
float heatIndex= 0;
if (temp >= 80) {
heatIndex = -42.379 + 2.04901523temp + 10.14333127humidity;
heatIndex = heatIndex - .22475541temphumidity - .00683783temptemp;
heatIndex = heatIndex - .05481717humidityhumidity + .00122874temptemphumidity;
heatIndex = heatIndex + .00085282temphumidityhumidity - .00000199temptemphumidity*humidity;
} else {
heatIndex = 0.5 * (temp + 61.0 + ((temp - 68.0)*1.2) + (humidity * 0.094));
}
if (humidity < 13 && 80 <= temp <= 112) {
float adjustment = ((13-humidity)/4) * sqrt((17-abs(temp-95.))/17);
heatIndex = heatIndex - adjustment;
}
return heatIndex;
}
/********************************** START SET COLOR *****************************************/
/*void setColor(int inR, int inG, int inB) {
analogWrite(redPin, inR);
analogWrite(greenPin, inG);
analogWrite(bluePin, inB);
Serial.println(“Setting LEDs:”);
Serial.print("r: “);
Serial.print(inR);
Serial.print(”, g: “);
Serial.print(inG);
Serial.print(”, b: ");
Serial.println(inB);
}
*/
/********************************** START RECONNECT*****************************************/
void reconnect() {
// Loop until we’re reconnected
while (!client.connected()) {
Serial.print(“Attempting MQTT connection…”);
// Attempt to connect
if (client.connect(SENSORNAME, mqtt_user, mqtt_password)) {
Serial.println(“connected”);
client.subscribe(sensornode1_set_topic);
/setColor(0, 0, 0);/
sendState();
} else {
Serial.print(“failed, rc=”);
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
// Wait 5 seconds before retrying
delay(5000);
}
}
}
/********************************** START CHECK SENSOR **********************************/
bool checkBoundSensor(float newValue, float prevValue, float maxDiff) {
return newValue < prevValue - maxDiff || newValue > prevValue + maxDiff;
}
/********************************** START MAIN LOOP***************************************/
void loop() {
ArduinoOTA.handle();
if (!client.connected()) {
// reconnect();
software_Reset();
}
client.loop();
if (!inFade) {
float newTempValue = dht.readTemperature(true); //to use celsius remove the true text inside the parentheses
float newHumValue = dht.readHumidity();
/*
//PIR CODE
pirValue = digitalRead(PIRPIN); //read state of the
if (pirValue == LOW && pirStatus != 1) {
motionStatus = "standby";
sendState();
pirStatus = 1;
}
else if (pirValue == HIGH && pirStatus != 2) {
motionStatus = "motion detected";
sendState();
pirStatus = 2;
}
*/
delay(100);
if (checkBoundSensor(newTempValue, tempValue, diffTEMP)) {
tempValue = newTempValue;
sendState();
}
if (checkBoundSensor(newHumValue, humValue, diffHUM)) {
humValue = newHumValue;
sendState();
}
int newLDR = analogRead(LDRPIN);
if (checkBoundSensor(newLDR, LDR, diffLDR)) {
LDR = newLDR;
sendState();
}
}
/*
if (flash) {
if (startFlash) {
startFlash = false;
flashStartTime = millis();
}
if ((millis() - flashStartTime) <= flashLength) {
if ((millis() - flashStartTime) % 1000 <= 500) {
setColor(flashRed, flashGreen, flashBlue);
}
else {
setColor(0, 0, 0);
// If you'd prefer the flashing to happen "on top of"
// the current color, uncomment the next line.
// setColor(realRed, realGreen, realBlue);
}
}
else {
flash = false;
setColor(realRed, realGreen, realBlue);
}
}
if (startFade) {
// If we don’t want to fade, skip it.
if (transitionTime == 0) {
setColor(realRed, realGreen, realBlue);
redVal = realRed;
grnVal = realGreen;
bluVal = realBlue;
startFade = false;
}
else {
loopCount = 0;
stepR = calculateStep(redVal, realRed);
stepG = calculateStep(grnVal, realGreen);
stepB = calculateStep(bluVal, realBlue);
inFade = true;
}
}
if (inFade) {
startFade = false;
unsigned long now = millis();
if (now - lastLoop > transitionTime) {
if (loopCount <= 1020) {
lastLoop = now;
redVal = calculateVal(stepR, redVal, loopCount);
grnVal = calculateVal(stepG, grnVal, loopCount);
bluVal = calculateVal(stepB, bluVal, loopCount);
setColor(redVal, grnVal, bluVal); // Write current values to LED pins
Serial.print("Loop count: ");
Serial.println(loopCount);
loopCount++;
}
else {
inFade = false;
}
}
}
}
*/
/**************************** START TRANSITION FADER ****************************************/
// From https://www.arduino.cc/en/Tutorial/ColorCrossfader
/ BELOW THIS LINE IS THE MATH – YOU SHOULDN’T NEED TO CHANGE THIS FOR THE BASICS
/*
The program works like this:
Imagine a crossfade that moves the red LED from 0-10,
the green from 0-5, and the blue from 10 to 7, in
ten steps.
We’d want to count the 10 steps and increase or
decrease color values in evenly stepped increments.
Imagine a + indicates raising a value by 1, and a -
equals lowering it. Our 10 step fade would look like:
1 2 3 4 5 6 7 8 9 10
R + + + + + + + + + +
G + + + + +
B - - -
The red rises from 0 to 10 in ten steps, the green from
0-5 in 5 steps, and the blue falls from 10 to 7 in three steps.
In the real program, the color percentages are converted to
0-255 values, and there are 1020 steps (255*4).
To figure out how big a step there should be between one up- or
down-tick of one of the LED values, we call calculateStep(),
which calculates the absolute gap between the start and end values,
and then divides that gap by 1020 to determine the size of the step
between adjustments in the value.
*/
int calculateStep(int prevValue, int endValue) {
int step = endValue - prevValue; // What’s the overall gap?
if (step) { // If its non-zero,
step = 1020 / step; // divide by 1020
}
return step;
}
/* The next function is calculateVal. When the loop value, i,
reaches the step size appropriate for one of the
colors, it increases or decreases the value of that color by 1.
(R, G, and B are each calculated separately.)
*/
int calculateVal(int step, int val, int i) {
if ((step) && i % step == 0) { // If step is non-zero and its time to change a value,
if (step > 0) { // increment the value if step is positive…
val += 1;
}
else if (step < 0) { // …or decrement it if step is negative
val -= 1;
}
}
// Defensive driving: make sure val stays in the range 0-255
if (val > 255) {
val = 255;
}
else if (val < 0) {
val = 0;
}
return val;
}
*/
/*reset/
void software_Reset() // Restarts program from beginning but does not reset the peripherals and registers
{
Serial.print(“resetting”);
ESP.reset();
}