i donāt know if its normal i think i have a error somewhere:
root@deepstack:~/deepstack-trainer# python3 train.py --dataset-path "/root/models/kipei"
Using torch 1.13.1+cu117 CPU
Namespace(adam=False, batch_size=16, bucket='', cache_images=False, cfg='./models/yolov5m.yaml', classes='', data={'train': '/root/models/kipei', 'val': '/root/models/kipei', 'nc': 2, 'names': ['egg', '']}, dataset_path='/root/models/kipei', device='', epochs=300, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_imgs=16, model='yolov5m', multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='train-runs/kipei', rect=False, resume=False, save_dir='train-runs/kipei/exp2', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5m.pt', workers=8, world_size=1)
Start Tensorboard with "tensorboard --logdir train-runs/kipei", view at http://localhost:6006/
Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0}
Overriding model.yaml nc=80 with nc=2
from n params module arguments
0 -1 1 5280 models.common.Focus [3, 48, 3]
1 -1 1 41664 models.common.Conv [48, 96, 3, 2]
2 -1 1 67680 models.common.BottleneckCSP [96, 96, 2]
3 -1 1 166272 models.common.Conv [96, 192, 3, 2]
4 -1 1 639168 models.common.BottleneckCSP [192, 192, 6]
5 -1 1 664320 models.common.Conv [192, 384, 3, 2]
6 -1 1 2550144 models.common.BottleneckCSP [384, 384, 6]
7 -1 1 2655744 models.common.Conv [384, 768, 3, 2]
8 -1 1 1476864 models.common.SPP [768, 768, [5, 9, 13]]
9 -1 1 4283136 models.common.BottleneckCSP [768, 768, 2, False]
10 -1 1 295680 models.common.Conv [768, 384, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 1219968 models.common.BottleneckCSP [768, 384, 2, False]
14 -1 1 74112 models.common.Conv [384, 192, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 305856 models.common.BottleneckCSP [384, 192, 2, False]
18 -1 1 332160 models.common.Conv [192, 192, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 1072512 models.common.BottleneckCSP [384, 384, 2, False]
21 -1 1 1327872 models.common.Conv [384, 384, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 4283136 models.common.BottleneckCSP [768, 768, 2, False]
24 [17, 20, 23] 1 28287 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [192, 384, 768]]
Traceback (most recent call last):
File "train.py", line 530, in <module>
train(hyp, opt, device, tb_writer, wandb)
File "train.py", line 90, in train
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
File "/root/deepstack-trainer/models/yolo.py", line 96, in __init__
self._initialize_biases() # only run once
File "/root/deepstack-trainer/models/yolo.py", line 151, in _initialize_biases
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
root@deepstack:~/deepstack-trainer#